MacArthur and Wilson’s Radical Theory wasn’t actually radical (even great ideas in ecology go unnoticed)

Most ecologists know about the Theory of Island Biogeography; the theory that diversity patterns on islands are the consequence of dispersal from a mainland source. Robert MacArthur and E.O. Wilson presented this theory first as a research paper in 1963 and then as a monograph in 1967. The rest, as they say, is history.

The Theory of Island Biogeography is remarkable because it suggests that patterns of species co-existence are the consequence of chance, history and random dispersal. Before its publication, community ecologists generally assumed that species co-existence was due to deterministic niche-assembly, where the number and relative abundance of species were a result of ecological niches and the functional roles of each species.

The theory placed randomness at the forefront to community ecology. It also paved the way for Stephen Hubbell’s Unified Neutral Theory of Biodiversity and Biogeography; one of the most influential ecological theories in 21st century. In fact, the introductory chapter of Hubbell’s monograph (like this blog post) was titled “MacArthur and Wilson’s Radical Theory” in reverence to their path-breaking work.

Like the theory itself, MacArthur and Wilson have also reached cult-like status. Perhaps a most telling way of illustrating this fact is not by listing the prizes awarded to these two men (and there were many), but rather by listing the academic prizes named after them! The Ecological Society of America, for instance, awards the ‘Robert H. MacArthur Award‘ to eminent mid-career ecologists and the American Society of Naturalists grants the ‘Edward O. Wilson Naturalist Award‘ to mid-career researchers who make significant contributions to a particular ecosystem of group of organisms. Similarly, the International Biogeography Society has the ‘MacArthur & Wilson Award‘ for notable contributions to the field of biogeography.  Needless to say, MacArthur and Wilson are very influential and well-respected by contemporary ecologists (well, in most cases…).

The funny thing is that their paradigm shifting idea was actually proposed two decades earlier, by the less well-known lepidopterist Eugene Munroe. Continue reading


Handling cumulative impacts during the environmental decision-making process

Although ecology doesn’t have many general laws, one most likely to qualify is the species-area relationship. If you walk through a field in a straight line and count all the different species you come across, you’ll notice that the total number of species increases as you progress along your straight path. After a while, however, you’ll start seeing the same species over and over again until you eventually find that you’re no longer spotting any new ones. This is the asymptotic species-area curve. While the exact mathematical form of the relationship is still hotly debated, it is safe to assume that it is an increasing function that reaches a plateau once all the species have been encountered.

Continue reading

A how-to guide to getting your paper published in Nature or Science (UPDATED)


As an aspiring ecologist, I am well aware that publishing a paper in Nature or Science would give my career an incredible kick-start. But, like so many others, I didn’t know how to get my name printed on the glossy pages of the two oldest and most prestigious weekly scientific journals. So I did what any good scientist would do – no, this time I didn’t check Wikipedia – I knuckled down and poured over the pages in these celebrated periodicals. I spent countless nights without sleep, trying to crack the code.

Just as I was about to give up, I saw a glimmer of hope: a golden thread linking the fortunate submissions to these two behemoths of academic excellence. I managed to reverse-engineer the path to success and I will be so generous to share my astounding findings with you. But before I do that, a word of warning: my how-to guide only applies to ecological studies. Physicists, physiologists and… um… uh… anyone else (I ran out of alliterative scientific sub-fields) will have to find their own strategies. Continue reading

Mountains, marathons, and manuscripts: why I do fundamental research.

There are many metaphors that use running a marathon or climbing a mountain to describe the process of ecological research. This post will not have any. No, this post will ignore linguistic devices and will shine the spotlight on behavioural psychology instead. Continue reading

While I might be a captive in the Ivory Tower, at least I don’t have Stockholm syndrome

As a PhD student, I spend my days trying to do good ecological research; as are thousands of other aspiring ecologists around the world. Good work, however, is useless unless others know about it. Prospective employers, potential collaborators and other researchers must recognize my effort for it to be valuable, because unread research is obviously worthless. Continue reading

Civil conflict and conservation

Picture 018

A few of my friends and I started a debate on the impact of war on biodiversity conservation over lunch one afternoon. On the one hand, we argued, civil conflict can improve the state of biodiversity. One such example is the demilitarisation zone between North and South Korea, which is considered one of the most well-preserved involuntary conservation areas in the world. On the other hand, however, conflict can cripple conservation attempts: Saddam Hussein’s draining of the Mesopotamian Marshes in Iraq for strategic purposes during the Gulf War is a typical case in point. Since we are all aspiring scientists, we wondered whether we could aggregate all the known cases where biodiversity was influenced by any form of civil conflict to (a) recognize some general trends and (b) identify the complex socio-ecological dynamics of various forms of civil strife. Continue reading